The University of Texas at Austin

09/12/2025 | News release | Distributed by Public on 09/12/2025 16:34

Stephen Hawking Was Right: Black Holes Always Grow in Area

The Clearest Signal Yet

LIGO's improved sensitivity is exemplified in a recent discovery of a black hole merger referred to as GW250114 (the numbers denote the date the gravitational-wave signal arrived at Earth: January 14, 2025). The event was not that different from LIGO's first-ever detection (called GW150914)-both involve colliding black holes about 1.3 billion light-years away with masses between 30 to 40 times that of our sun. But thanks to 10 years of technological advances reducing instrumental noise, the GW250114 signal is dramatically clearer.

"We can hear it loud and clear, and that lets us test the fundamental laws of physics," said LIGO team member Katerina Chatziioannou, Caltech assistant professor of physics and William H. Hurt Scholar, and one of the authors of a new study on GW250114 published in the Physical Review Letters.

By analyzing the frequencies of gravitational waves emitted by the merger, the LVK team was able to provide the best observational evidence captured to date for the black hole area theorem.

In essence, the LIGO detection allowed the team to "hear" two black holes growing as they merged into one, verifying Hawking's theorem. (Virgo and KAGRA were offline during this particular observation.) This is the second test of the black hole area theorem; an initial test was performed in 2021 using data from the first GW150914 signal, but because that data was not as clean, the results had a confidence level of 95 percent as compared to 99.999 percent for the new data.

Nobel Laureate Kip Thorne recalls Hawking phoning him to ask whether LIGO might be able to test his theorem immediately after he learned of the 2015 gravitational-wave detection. Hawking died in 2018 and sadly did not live to see his theory observationally verified.

"If Hawking were alive, he would have reveled in seeing the area of the merged black holes increase," Thorne said.

The trickiest part of this type of analysis had to do with determining the final surface area of the merged black hole. The surface areas of pre-merger black holes can be more readily gleaned as the pair spiral together, roiling space-time and producing gravitational waves. But after the black holes coalesce, the signal is not as clearcut. During this so-called ringdown phase, the final black hole vibrates like a struck bell.

In the new study, the researchers were able to precisely measure the details of the ringdown phase, which allowed them to calculate the mass and spin of the black hole, and subsequently determine its surface area. More precisely, they were able, for the first time, to confidently pick out two distinct gravitational-wave modes in the ringdown phase. The modes are like characteristic sounds a bell would make when struck; they have somewhat similar frequencies but die out at different rates, which makes them hard to identify. The improved data for GW250114 meant that the team could extract the modes, demonstrating that the black hole's ringdown occurred exactly as predicted by mathematical models.

The University of Texas at Austin published this content on September 12, 2025, and is solely responsible for the information contained herein. Distributed via Public Technologies (PUBT), unedited and unaltered, on September 12, 2025 at 22:34 UTC. If you believe the information included in the content is inaccurate or outdated and requires editing or removal, please contact us at [email protected]