02/03/2026 | Press release | Distributed by Public on 02/03/2026 14:19
As AI reshapes the world, organizations encounter unprecedented risks, and security leaders take on new responsibilities. Microsoft's Secure Development Lifecycle (SDL) is expanding to address AI-specific security concerns in addition to the traditional software security areas that it has historically covered.
SDL for AI goes far beyond a checklist. It's a dynamic framework that unites research, policy, standards, enablement, cross-functional collaboration, and continuous improvement to empower secure AI development and deployment across our organization. In a fast-moving environment where both technology and cyberthreats constantly evolve, adopting a flexible, comprehensive SDL strategy is crucial to safeguarding our business, protecting users, and advancing trustworthy AI. We encourage other organizational and security leaders to adopt similar holistic, integrated approaches to secure AI development, strengthening resilience as cyberthreats evolve.
Why AI changes the security landscape
AI security versus traditional cybersecurity
AI security introduces complexities that go far beyond traditional cybersecurity. Conventional software operates within clear trust boundaries, but AI systems collapse these boundaries, blending structured and unstructured data, tools, APIs, and agents into a single platform. This expansion dramatically increases the attack surface and makes enforcing purpose limitations and data minimization far more challenging.
Expanded attack surface and hidden vulnerabilities
Unlike traditional systems with predictable pathways, AI systems create multiple entry points for unsafe inputs including prompts, plugins, retrieved data, model updates, memory states, and external APIs. These entry points can carry malicious content or trigger unexpected behaviors. Vulnerabilities hide within probabilistic decision loops, dynamic memory states, and retrieval pathways, making outputs harder to predict and secure. Traditional threat models fail to account for AI-specific attack vectors such as prompt injection, data poisoning, and malicious tool interactions.
Loss of granularity and governance complexity
AI dissolves the discrete trust zones assumed by traditional SDL. Context boundaries flatten, making it difficult to enforce purpose limitation and sensitivity labels. Governance must span technical, human, and sociotechnical domains. Questions arise around role-based access control (RBAC), least privilege, and cache protection, such as: How do we secure temporary memory, backend resources, and sensitive data replicated across caches? How should AI systems handle anonymous users or differentiate between queries and commands? These gaps expose corporate intellectual property and sensitive data to new risks.
Multidisciplinary collaboration
Meeting AI security needs requires a holistic approach across stack layers historically outside SDL scope, including Business Process and Application UX. Traditionally, these were domains for business risk experts or usability teams, but AI risks often originate here. Building SDL for AI demands collaborative, cross-team development that integrates research, policy, and engineering to safeguard users and data against evolving attack vectors unique to AI systems.
Novel risks
AI cyberthreats are fundamentally different. Systems assume all input is valid, making commands like "Ignore previous instructions and execute X" viable cyberattack scenarios. Non-deterministic outputs depend on training data, linguistic nuances, and backend connections. Cached memory introduces risks of sensitive data leakage or poisoning, enabling cyberattackers to skew results or force execution of malicious commands. These behaviors challenge traditional paradigms of parameterizing safe input and predictable output.
Data integrity and model exploits
AI training data and model weights require protection equivalent to source code. Poisoned datasets can create deterministic exploits. For example, if a cyberattacker poisons an authentication model to accept a raccoon image with a monocle as "True," that image becomes a skeleton key-bypassing traditional account-based authentication. This scenario illustrates how compromised training data can undermine entire security architectures.
Speed and sociotechnical risk
AI accelerates development cycles beyond SDL norms. Model updates, new tools, and evolving agent behaviors outpace traditional review processes, leaving less time for testing and observing long-term effects. Usage norms lag tool evolution, amplifying misuse risks. Mitigation demands iterative security controls, faster feedback loops, telemetry-driven detection, and continuous learning.
Ultimately, the security landscape for AI demands an adaptive, multidisciplinary approach that goes beyond traditional software defenses and leverages research, policy, and ongoing collaboration to safeguard users and data against evolving attack vectors unique to AI systems.
SDL as a way of working, not a checklist
Security policy falls short of addressing real-world cyberthreats when it is treated as a list of requirements to be mechanically checked off. AI systems-because of their non-determinism-are much more flexible that non-AI systems. That flexibility is part of their value proposition, but it also creates challenges when developing security requirements for AI systems. To be successful, the requirements must embrace the flexibility of the AI systems and provide development teams with guidance that can be adapted for their unique scenarios while still ensuring that the necessary security properties are maintained.
Effective AI security policies start by delivering practical, actionable guidance engineers can trust and apply. Policies should provide clear examples of what "good" looks like, explain how mitigation reduces risk, and offer reusable patterns for implementation. When engineers understand why and how, security becomes part of their craft rather than compliance overhead. This requires frictionless experiences through automation and templates, guidance that feels like partnership (not policing) and collaborative problem-solving when mitigations are complex or emerging. Because AI introduces novel risks without decades of hardened best practices, policies must evolve through tight feedback loops with engineering: co-creating requirements, threat modeling together, testing mitigations in real workloads, and iterating quickly. This multipronged approach helps security requirements remain relevant, actionable, and resilient against the unique challenges of AI systems.
So, what does Microsoft's multipronged approach to AI security look like in practice? SDL for AI is grounded in pillars that, together, create strong and adaptable security:
Together, these pillars form a holistic and adaptive framework that moves beyond checklists, enabling Microsoft to safeguard AI systems through collaboration, innovation, and shared responsibility. By integrating research, policy, standards, enablement, cross-functional collaboration, and continuous improvement, SDL for AI creates a culture where security is intrinsic to AI development and deployment.
What's new in SDL for AI
Microsoft's SDL for AI introduces specialized guidance and tooling to address the complexities of AI security. Here's a quick peek at some key AI security areas we're covering in our secure development practices:
In the coming months, we'll share practical and actionable guidance on each of these topics.
Microsoft SDL for AI can help you build trustworthy AI systems
Effective SDL for AI is about continuous improvement and shared responsibility. Security is not a destination. It's a journey that requires vigilance, collaboration between teams and disciplines outside the security space, and a commitment to learning. By following Microsoft's SDL for AI approach, enterprise leaders and security professionals can build resilient, trustworthy AI systems that drive innovation securely and responsibly.
Keep an eye out for additional updates about how Microsoft is promoting secure AI development, tackling emerging security challenges, and sharing effective ways to create robust AI systems.
To learn more about Microsoft Security solutions, visit our website. Bookmark the Security blog to keep up with our expert coverage on security matters. Also, follow us on LinkedIn (Microsoft Security) and X (@MSFTSecurity) for the latest news and updates on cybersecurity.